Shop Math Formulas
Insert Usage per Part
$$ I_p \;=\; \frac{\dfrac{z}{z_i}}{T} \;=\; \frac{z}{z_i\,T} $$
Variables:
$I_p$ -- inserts used per part (expected, real-valued)
$z$ -- number of teeth (inserts mounted in cutter body)
$z_i$ -- number of usable edges per insert
$T$ -- tool life (parts per insert change)
Example:
- $I_p$ = inserts used per part (expected, real-valued)
- $z$ = number of teeth (inserts mounted in cutter body)
- $z_i$ = number of usable edges per insert
- $T$ = tool life (parts per insert change)
This formula calculates the expected number of inserts used per part based on tool geometry and life.
Variables \(\text{Inserts\_needed}(N) = \left\lceil \frac{z}{z_i} \cdot \frac{N}{T} \right\rceil\)
\[\begin{aligned} z &= 6,\quad z_i = 2,\quad T = 100 \\ I_p &= \frac{6}{2\cdot 100} = 0.03\ \text{inserts/part} \\ \text{Inserts\_consumed}(1000) &= 0.03 \times 1000 = 30 \\ \text{Inserts\_needed}(1000) &= \left\lceil 30 \right\rceil = 30 \end{aligned}\]
Dividing inserts by inserts by time (NEED TO REVIEW)